398 Short Reports

(0.2 g) synthesized by Beyer's method [5] and hexacosanol (0.25 g) in dry CH_2Cl_2 (30 ml), a soln of dicyclohexylcarbodimide (0.2 g) in dry CH_2Cl_2 (30 ml) was added dropwise for a period of 30 min and the reaction mixture was allowed to stand 18 hr. The solvent was removed and EtOAc (25 ml) was added to separate dicyclohexyl urea. The mother liquor, obtained after the separation of the urea derivative, on concentration yielded hexacosylferulate (1) which crystallized from cold petrol in colourless flakes, mp 70° , R_f 0.27 (C_6H_6) (yield: 75%) (Found: C, 77.50; H, 11.00; O, 11.50: $C_{36}H_{62}O_4$ requires C, 77.42; H, 11.11; O, 11.47%).

Acknowledgements—The authors wish to express their sincere thanks to Prof. Dr. F. Bohlmann, Technische der Universität Berlin, Drs. H. Egge, Bonn University, S. Natori, National Institute of Hygienic Sciences, Tokyo and Mr. A. K. Acharyya,

Department of Chemistry, Calcutta University for spectral measurements and to CSIR (India) for financial assistance to one of the authors (K.P.D.).

REFERENCES

- 1. Norin, T. (1972) Phytochemistry 11, 1231.
- Shanbhag, S. N., Mesta, C. K., Maheshwari, M. L., Paknikar, S. K. and Bhattacharyya, S. C. (1964) Tetrahedron 20, 2605.
- 3. Fieser, L. F. and Fieser, M. (1967) Reagents for Organic Synthesis, p. 231. Wiley, New York.
- Leonteva, V. G., Gromova, A. S., Lutskii, V. I., Modonova, L. D. and Tyukavkina, N. A. (1974) Khim. Prir. Soedin. 10, 240.
- 5. Pearl, I. A. and Beyer, D. L. (1951) J. Org. Chem. 16, 219.

Phytochemistry, 1977, Vol. 16, pp 398-399, Pergamon Press, Printed in England

5,7-DIHYDROXY-6,2',4',5'-TETRAMETHOXYFLAVONE FROM THE LEAVES OF CHUKRASIA TABULARIS

KOZHIPARAMBIL K. PURUSHOTHAMAN*, AYYAPATH SARADA*, GANESAN SARASWATHI* and JOSEPH D. CONNOLLY†

*Captain Srinivasa Murti Research Institute, Adyar, Madras 600020, India;†Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland

(Received 31 August 1976)

Key Word Index—Chukrasia tabularis; Meliaceae; 5,7-dihydroxy-6,2',4',5'-tetramethoxyflavone

From the leaves of *Chukrasia tabularis* we have isolated a new flavone which is assigned the structure 5,7-dihydroxy-6,2',4',5'-tetramethoxyflavone on the following evidence.

The flavone $C_{19}H_{18}O_8$, mp 213-214° [v_{max} 3400, 1640 cm⁻¹] readily formed a dimethyl ether with K₂CO₃ Me₂SO₄ and a diacetate both of which lacked hydroxyl absorption. The UV spectrum [$\lambda_{\text{max}}^{\text{EiOH}}$ 257, 272, 360 (ϵ 16200, 14650, 19630); with NaOAc 240, 273, 364 (ε 17600, 17140, 17760), with AlCl₃ 266, 278, 393 (ε 15270, 14490, 21190); with NaOEt 275, 383 (ε 20500, 18000) nm] indicated [1] the presence of phenolic hydroxyl groups at positions 5 and 7. The trisubstituted nature of both rings A and B and the lack of a substituent at position 3 was deduced from the mass spectrum of the dimethyl ether which had prominent peaks at 402, 387 (base peak), 357, 195, 192, 177 and 167 (cf. gardenin [2] and ref. [1]). These conclusions were reinforced by the NMR spectrum of the dimethyl ether which showed H-3 at the characteristic value [1] of 6.5 δ and three aromatic proton singlets (δ 6.72, 6.86 and 7.3). The 2',4',5'-substitution pattern in ring B followed from the singlet nature of the aromatic protons. The remaining problem of the position of attachment of the third aromatic proton (C-6 or C-8) was readily solved by the use of benzeneinduced shifts of the methoxyl groups [1]. In the dimethyl ether four methoxyl groups showed large upfield shifts (0.73, 0.67, 0.59, 0.32 ppm) in benzene while the remaining two moved by 0.13 and -0.11 ppm. In the diacetate the corresponding shifts were 0.71, 0.6, 0.34 and 0.13 ppm. These data confirmed the presence of a proton at position 8 and hence the structure of the flavone as 5,7-dihydroxy-6,2',4',5'-tetramethoxyflavone. Substantial benzene-induced shifts (>0.3 ppm) of five methoxyl groups would have been expected for 5,7,8,2',4',5'-hexamethoxyflavone.

EXPERIMENTAL

All mp's are uncorrected. NMR spectra were recorded on a Varian XL-100 instrument in CDCl₃ with TMS as internal standard. Shade dried leaves of *Chukrasia tabularis* A. Juss (2 kg) were exhaustively extracted with hexane in the cold. Concentration of the hexane afforded a solid which was crystd from EtOAc to give the flavone mp 213-214°. The mother liquors were chromatographed over Si gel in hexane. Elution with CHCl₃-EtOAc (19:1) yielded more flavone (0.5 g). MS:

(100%), 359 (64), 356 (44), 331 (32), 301, 192, 178, 177, 167, 149, 144, 139 and 69 (52%). (Found: C, 60.8; H, 5.15. $C_{19}H_{18}O_8$ requires: C, 60.95; H, 4.8%). NMR δ 3.78, 3.82, 3.9, 3.96 (3H, s, each, 4 × OMe), δ 6.64 (1H, s, H-3), δ 6.89 (2H, s, 2 × Ar-H), δ 7.48 (1H, s, Ar-H). Acetylation with Δ 2O-C₅H₅N gave the diacetate ex ether, mp 182°. (Found: C, 60.05; H, 5.0. $C_{23}H_{22}O_{10}$ requires: C, 60.25; H, 4.8%). NMR δ 2.41, 2.52 (3H, s, each. 2 × OAc), δ 3.87, 3.89, 3.91, 3.95 (3H, s, each, 4 × OMe), δ 6.59 (1H, s, H-3), δ 6.99 (1H, s, Ar-H), δ 7.24 (1H, s, Ar-H), δ 7.35 (1H, s, Ar-H). Methylation of the flavone with K_2 CO₃-Me₂SO₄ followed by crystn from CHCl₃-Et₂O afforded the dimethyl ether mp 184° (Found: C, 63.0; H, 5.7. $C_{21}H_{22}O_8$ requires: C, 62.7; H, 5.45%). NMR δ 3.99, 3.98, 3.97, 3.93 (3H, s, each), 3.92 (6H, s), (6 × OMe).

Short Reports 399

Acknowledgements—The Indian authors wish to thank the Central Council for Research in Indian Medicine and Homeopathy, Government of India, New Delhi, for financial support.

REFERENCES

- (1975) The Flavonoids (Harborne, J. B., Mabry, T. J. and Mabry, H. eds.). Chapman & Hall, London.
- Rama Rao, A. V. and Venkataraman, K. (1968) Indian J. Chem. 6 677.

Phytochemistry, 1977, Vol. 16, pp. 399, Pergamon Press, Printed in England

A NEW FLAVONE FROM GARDENIA GUM

S. C. CHHABRA, S. R. GUPTA and N. D. SHARMA Department of Chemistry, University of Delhi, Delhi-110007, India

(Revised received 8 September 1976)

Key Word Index—Gardenia lucida; G. gummifera; Rubiaccae; 5,7,3',4'-tetrahydroxy-6,8-dimethoxyflavone; structural determination.

Previously fifteen flavones have been isolated from Gardenia gum [1-5]. In continuation of our work [3-5] on the flavonoids of this gum, a new flavone has been isolated from the C_6H_6 and H_2O insoluble portion of the alcoholic extract of the gum using PC and preparative-TLC. The structure 5,7,3',4'-tetrahydroxy-6,8-dimethoxyflavone has been assigned to it based on its spectral properties. The proposed structure has been confirmed by synthesis.

EXPERIMENTAL

Extraction and isolation. A commercial sample containing the gums of G. lucida Roxb. and G. gummifera L. (3.5 kg) was repeatedly extracted with boiling EtOH. Combined extracts on concentration gave a gummy solid (2.5 kg) which was repeatedly extracted first with hot petrol and then with hot C_6H_6 . The insoluble portion (40 g) was thoroughly macerated with H_2O and dried. PC (Whatman 3 MM) of the H_2O insoluble portion using 50% HOAc gave 3 yellow bands. Upper and lower bands yielded 8 compounds [5]. The middle band resolved into 2 bands B_1 and B_2 on TLC (Si gel, $C_6H_5Me-C_5H_5N-HOAc$, 10.1:1). The upper band B_1 gave a solid (20 mg) which further separated into 2 compounds C_1 and C_2 on TLC (polyamide, EtOH). The lower band B_2 yielded one more compound [5].

Identification of compounds. Compound C_1 crystallized as yellow needles, mp 254–6°; R_f : 0.88 (BAW, 4:1:5); 0.85 (PhOH-H₂O, 3:1); 0.22 (15% aq. HOAc); (Found: C, 59.0: H, 4.4. $C_{17}H_{14}O_8$ requires: C, 59.0; H, 4.1%); λ_{max}^{MoOH} nm: 255, 275, 345; AlCl₃, 275, 340, 430; AlCl₃-HCl, 260, 300, 370; NaOAc, 280, 325, 380–85; NaOAc-H₃BO₃, 265, 375; MS m/e (rel. int.). 346 (M⁺, 76), 331 (M⁺, —Me, 100), 197(16), 169(16) and 134(8); ν_{max}^{KBF} 3448, 1689, 1642, 1572, 1513, 1031 and 1000 cm⁻¹. It gave a positive Gibb's test. Methylation with CH₂N₂ gave a partial Me ether, mp 145°; λ_{max}^{MoOH} nm: 255, 280, 340 which was identical with dimethylnobiletin [6] (mmp, co-TLC, UV and IR). Compound C_1 is therefore 5,7,3′,4′-tetrahydroxy-6,8-dimethoxy-flavone. Compound C_2 has earlier been identified [5].

Synthesis of 2-(3',4'-Dibenzyloxybenzoyloxy)-4-benzyloxy-3,5,6-trimethoxyacetophenone. A mixture of 2-hydroxy-4-benzyloxy-3,5,6-trimethoxyacetophenone [7] (500 mg), 3,4-dibenzyloxybenzoyl chloride (1 g) and C_5H_5N (5 ml) was heated at 100° for 3 hr. The cooled reaction mixture was treated with ice-HCl

(1:1) and then extracted with EtOAc. The organic layer was washed with $\rm H_2O$, dried and concentrated. The ester was purified by column chromatography, crystallized from EtOAcpetrol (700 mg), mp 125–26°; Found: C, 72.0; H, 5.4 C₃₉H₃₆O₉ requires C, 72.2; H, 5.6%). $\nu_{\rm max}^{\rm KBr}$ 1790, 1718, 1595 and 1508 cm⁻¹

2-Hydroxy-4,3',4'-tribenzyloxy-3,5,6-trimethoxydibenzoylmethane. The above ester (500 mg) in dry C_5H_5N (6 ml) was treated with powdered KOH (1 g) and the mixture shaken vigorously for 2 hr with occasional warming. The reaction mixture was worked up as above. The brown semi-solid diketone was purified by column chromatography (Si gel, C_6H_6 with increasing amounts of EtOAc). The diketone was obtained as a low melting yellow solid (350 mg). $v_{\rm max}^{\rm KB}$ 2920, 1724, 1590, 1495 and 1470 cm⁻¹.

7,3',4'-Tribenzyloxy-5,6,8-trimethoxyflavone. The diketone (300 mg) was gently refluxed with HOAc (5 ml) and fused NaOAc (700 mg) in an oil bath for 3 hr. The resulting flavone crystallized from EtOAc as colourless shining needles (200 mg), mp 150–51°; (Found: C, 74.5; H, 5.3. $C_{39}H_{34}O_8$ requires C, 74.3; H, 5.4%); $\lambda_{\text{max}}^{\text{MoOH}}$ nm (log ε): 250(4.31), 269(4.29), 334(4.38); PMR (60 MHz, CDCl₃): δ 3.9 (9H, s, 3 × —OCH₃), 5.3 (6H, s, 3 × —CH₂- ϕ), 6.6 (1H, s, C-3), 73–7.6 (18H, m, C-2, C-5', C-6' and 3 × —C₆H₃); $\nu_{\text{max}}^{\text{RBr}}$ 1639, 1585, 1513 and 1451 cm⁻¹.

5.7,3',4'-Tetrahydroxy-6,8-dimethoxyflavone. A mixture of the above flavone (120 mg), dry AlCl₃ (360 mg) and MeCN (5 ml) was refluxed at 100° for 3 hr. MeCN was distilled off and the AlCl₃ complex was decomposed with ice-HCl (1:1). The crude flavone was purified by preparative-TLC (Si gel, C_6H_5 Me-HCO₂Et-HCO₂H, 5:4:1). It crystallized from EtOH as yellow needles (25 mg), mp 255-57°; $\lambda_{\rm max}^{\rm MeOH}$ nm (log ϵ): 256(4.04), 280(4.10), 346(4.17). It was identical (mmp, co-TLC, UV and IR) with the natural samples.

REFERENCES

- 1. Stenhouse, J. and Groves, C. E. (1877) J. Chem. Soc. 32, 551.
- Rama Rao, A. V., Venkataraman, K., Chakrabarti, P., Sanyal, A. K. and Bose, P. K. (1970) Indian J. Chem. 8, 398.
- Krishnamurti, M., Seshadri, T. R. and Sharma, N. D. (1972) Indian J. Chem. 10, 23.
- Gupta, S. R., Seshadri, T. R., Sharma, C. S. and Sharma, N. D. (1975) Indian J. Chem. 13, 785.
- Chhabra, S. C., Gupta, S. R., Seshadri, T. R. and Sharma, N. D. (1976) *Indian J. Chem.* 14B, 651.
- 6. Sarin, P. S. and Seshadri, T. R. (1960) Tetrahedron 8, 64.
- 7. Lee, H. H. and Tan, C. H. (1965) J. Chem. Soc. 2743.